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The  resu l t s  of a solut ion of the p rob lem of the s tabi l i ty  of s teady convect ive flow in  a ve r t i ca l  
layer  with the rmal ly  insulated boundaries  and a compar i son  with the opposite l imiting ca se  of 
ideally t he rma l ly  conducting boundaries  a r e  p resen ted .  

The  resu l t s  of studies of the s tabi l i ty  of closed s teady convect ive flow between ve r t i ca l  pa ra l l e l  planes 
[1,2] show that  depending on the value of the Prandt l  number  Pr  the instabil i ty is caused by mechan i sms  
which differ  in the i r  physical  na tu re .  At low and modera t e  Prandt l  numbers  hydrodynamic d is turbances  
leading to the fo rmat ion  of s teady  vor t i ces  a t  the  in te r face  of the  opposing flows a r e  r e spons ib l e  for  the  in s t a -  
bi l i ty .  At l a rge r  prandt l  numbers  (Pr > 12) the  instabi l i ty has a wave nature  and is connected with an i nc rea se  
in the convect ive fluxes of t e m p e r a t u r e  waves ,  

T h e  numer ica l  r e su l t s  presented in [1,2] were  obtained on the a s sumpt ion  that  t e m p e r a t u r e  d i s tu rbances  
vanish  at the  boundar ies  of the l aye r .  Such boundary conditions cor respond  to  the  l imiting case  when the t h e r -  
mal  conductivity of the boundaries  is much g r e a t e r  than the t h e r m a l  conductivity of the  liquid. If  the t h e r m a l  
conductivit ies of the liquid and the solid m a s s e s  border ing  on it a r e  comparab le  then t e m p e r a t u r e  d is turbances  
pene t ra te  into the solid m a s s e s .  Then the question a r i s e s  of whether  the r e l a t ive  t h e r m a l  conductivity of the 
boundaries affects  the s tabi l i ty  of the convect ive flow (the conjugate p rob lem of s tabi l i ty  of convect ive flow). 
It is c l ea r  in advance that  the hydrodynamic mechan i sm of the instabil i ty mus t  be  li t t le s ens i t i ve  to  the t h e r m a l  
proper t ies  of the solid m a s s e s .  As for  a wave instabil i ty,  s ince  it is connected with growing t e m p e r a t u r e  
waves it could be expected,  genera l ly  speaking,  that  the p roper t i e s  of the  solid m a s s e s  have a cons iderable  
effect on the c r i t i ca l  p a r a m e t e r s  of this instabi l i ty.  The resu l t s  presented  below show, however ,  that  the 
penetra t ion of t e m p e r a t u r e  d is turbances  into the surrounding solid m a s s e s  has a weak effect on the conditions 
of fo rmat ion  of instabil i t ies  of both the hydrodynamic and the wave t ypes .  

T o  c lar i fy  the role  of the penet ra t ion  of t h e r m a l  d is turbances  on the  s tab i l i ty  it is obviously sufficient  
to consider  the l imiting case  opposite to that which one usually has  in mind,  namely ,  when the  t h e r m a l  conduc-  
t ivi ty  of the liquid is fa r  l a rge r  than the t h e r m a l  conductivity of the boundar ies .  In this l imiting case  the 
boundary condition of t h e r m a l  insulat ion must  be  se t  up for  t e m p e r a t u r e  d i s tu rbances .  

In the closed ve r t i ca l  layer  between the planes x = ~:h a p lanc -pa ra l l e l  convect ive flow is es tabl ished 
with a l inear  t e m p e r a t u r e  prof i le  and a cubic veloci ty  prof i le :  

P e r m '  State Univers i ty .  P e r m '  Pedagogical  Ins t i tu te .  Trans la ted  f r o m  Inzhenerno-Fiz icheskLi  Zhurnal ,  
Vol. 32, No. 6, pp. 1062-1064, June, 1977. Original a r t i c l e  submit ted  May 4, 1976. 

This material is protected by copyright registered in the name o f  Plenum Publishing Corporation, 227 We~t 17th Street, New York, N.Y. I0011. No part 
o f  this publication may be reproduced, stored h~ a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, 
microfilmhzg, recording or otherwise, without written permission o f  the publisher. A copy o f  this article is available from the publisher for $ Z 50. 

688 



Grin" i i il 

4002O0 lli.]ll ili],ii!~ I ! ~ ~  2. 

I i 
0 , i 

-2 -/ O / t~ Pr 
Fig. 1. Minimum cr i t i ca l  Grashof  number as a function 
of Prandtl  number:  1) hydrodynamic branch;  2) wave branch.  
Solid lines : t he rmal ly  insulated boundaries;  dashed lines : 
ideally the rmal ly  conducting boundar ies .  

c , r  
T o = - x ,  v o= - ~ ( x  s - x ) .  (1) 

Here  we introduce dimensionless  var iables ;  as the units of dis tance,  veloci ty,  and t e m p e r a t u r e  we take h, 
u/h  (u is the  kinematic viscosi ty) ,  and the hal f -di f ference @ between the t empera tu re s  of the planes.  The 
Grashof  number is defined as usual:  Gr = gBOh3/v 2. The  analysis of smal l  normal  disturbances of the form 
exp (--ht + ikz) leads to  dimensioness  equations for the amplitudes of the dis turbances of the s t r e a m  function 

and the t e m p e r a t u r e  0: 

(~0 Iv - - 2 l ~ "  + k ~ )  + (~" - -  k2~)(% --ikvo) + ikVo ~ - -Gr0 '  = 0, (2) 

1---~-(0"-- kzO) + (% --  ikvo)O - -  ikTo q~= O (3) 
Pr 

T he following conditions for  the amplitudes a r e  set  up at the boundaries (here Pr = v/X is the Prandtl  number) .  
of the l ayer :  

x =  ___ 1: ~ = ~' = 0' =0 .  (4) 

The  boundary problem (2)-(4) de te rmines  the spec t rum of the charac te r i s t i c  dis turbances and thei r  dec-  
r emen t s  ~. The l imi t s  of s tabil i ty a r e  found f rom the condition ~r  = 0. The solution of the problem was 
found numer ica l ly  by the R u n g e -  K u t t a -  Merson  method with orthogonalization of the vector  solutions by the 
Gram --Schmidt  method at each s tep of integration; the or thonormal izat ion was performed with respec t  to  the 
maximum vector  solut ion in absolute value (in the given step) .  

The  principal  resu l t  of the  calculations is presented in Fig.  1, where  the dependence of the minimum 
(with r e spec t  to  k) c r i t i ca l  Grashof  number Grin on the Prandtl  number Pr  is shown for  the hydrodynamic (1) 
and wave (2) branches of instabil i ty.  The  corresponding limits of s tabi l i ty  for ideally conducting boundaries 
[1,2] a r e  shown here  by a dashed line for compar ison.  As is seen,  in both branches of instabili ty the depen-  
dences Grm(l>r) for  the two types of boundary conditions a r e  s imi l a r .  By comparison with the case  of ideally 
conducting boundaries t he r e  is some d e c r e a s e  in the limiting Prandtl  number P r ,  beginning with which the 
wave branch  of instabili ty appears  (extrapolation gives a value of l>r, ~ 8 instead of l l A  for  the case  of ideally 
the rmal ly  conducting boundaries) .  In the limit of Pr  >> l>c,,  as an asymptot ic  analysis shows (see [3]), the 
same limiting law Grin = 590/q--~ occurs  in both cases  of boundary conditions. The cr i t ica l  values of the wave 
number k m a r e  a lso s imi l a r  for  the twovar ian ts  of the boundary conditions d i scussed .  

Thus ,  the calculat ion shows that the t he rma l  proper t ies  of the boundaries have a weak effect on the s ta -  
bility of convect ive flow in a ver t ica l  l ayer .  In this sense  one must emphasize  the d i f fe rence  f rom the problem 
of the s tabi l i ty  of equil ibrium of a horizontal  layer  of liquid heated f rom below, where ,  as is known (see [1]), 
*here  is a ve ry  s t rong dependence of the limit of stabil i ty and the fo rm of the dis turbances on the thermal  prop- 
e r t i e s  of the boundary solid masses .  
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x, z, t r a n s v e r s e  and longitudinal coordinates ;  v0, To, undisturbed veloci ty  and t e m p e r a t u r e  prof i les ;  
ampli tudes  of d i s turbances  of s t r e a m  function and t e m p e r a t u r e ;  ~, dec remen t ;  k, wave number .  

L I T E R A T U R E  C I T E D  

1. G . Z .  Gershuni  and E.  M. Zhukhovitskii ,  Convect ive  Stabili ty of an  Uncompressed  Fluid: [in Russ ianL 
Nauka, Moscow (1972). 

2. R . V .  Bir ikh,  G. Z.  Gershuni ,  E.  M .  Zhukhovi tski i ,  and B.  N. Rudakov, Pr ik l .  Mat .  Mekh,, 36, No. 
4 (1972). 

3. R . V .  Bir ikh,  G. Z. Gershuni ,  E.  M. Zhukhovitskii ,  R .  N, Rudakov, and V. M. Shikhov, Uch. Zap.  
I ~ r m .  Univ., Gidrodinam. ,  No. 327, P a r t  6 (1975). 

H Y D R O D Y N A M I C  S T A B I L I T Y  O F  

A N O N - N E W T O N I A N  F L U I D  I N  A 

I .  G .  S e m a k i n  

CONVECTIVE FLOW OF 

VERTICAL LAYER 

UDC 536.25:532.135 

Steady convect ive non-Newtonian fluid flow and its s tabi l i ty  under s m a l l  per turbat ions  a r e  inves -  
t igated.  

We wish to analyze  the f ree  t h e r m a l  convection of a non-Newtonian fluid in an inf ini te-plane ve r t i ca l  
channel.  We use  the rheologica l  equation 

x~.~ = - -  6ij p + 11 (1 + al) n-1 hi;. (1) 

T rans i t i on  to  a Newtonian fluid takes  place as a -~ 0 or n - +  1. I n t h e  l imit  of la rge  a the Cstwald 
- -Dev i l l e  model  is obtained f rom (1). Unlike the power- law model ,  Eq.  (1) gives a finite initial v i scos i ty .  

It has been shown [1] that Eq. (1) welt  de sc r ibe s  the rheologica l  p roper t i e s  of po lymer  solutions in a 
definite concentra t ion in terva l .  The  authors  of [1] d iscuss  pseudoplast ic  media  with n - -  1 = - -m  < 0. 

We now invest igate  plane convect ive motion homogeneous along the z ax i s .  We place the coordinate  
axes so  that  the y axis is d i rec ted  upward along the center l ine  of the channel and the x axis is perpendicular  
to  the wal ls .  The wall  coordinates  a r e  x = ~h. The walls a r e  maintained at  constant t e m p e r a t u r e s  : T (--h) = 
00; T ( h ) = - - O  0. 

We adopt the following r e f e r e n c e  units : d is tance  h; t i m e  h2o/~; veloci ty  pgfl| t e m p e r a t u r e  O0; 
p r e s s u r e  pg~@0 h. The s y s t e m  of d imens ionless  f r ee -convec t ion  equations in project ions onto the x and y axes 
has the f o r m  

Ov~ + Ov~ ) Op [ OH 
Ov~ + Gr vx ---~-y] Ox Ox Ot -~x v~ = - - - -  + HAv~ + 2 - -  

oo. 
0---~ + G r  vx 0~-- ~ = - -  Oy + HAvu ~ Oy 

OT 
• G r v v T  = Pr-IAT: 

Ot 

av~ + aH /av~ av~)] 
; 

0% ) 0I"I Or. ] 
-I- Ox + 2 --~---y. Oy J + T; (3) 

(4) 

c)v~ ~ 0% ~0;  (5) 
Ox Oy 
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