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EFFECT OF THERMAL PROPERTIES OF BOUNDARIES ON
STABILITY OF CONVECTIVE FLOW IN A VERTICAL LAYER

G. Z. Gershuni, O. N. Dement'ev, UDC 532,516
and E. M. Zhukhovitskii :

The results of a solution of the problem of the stability of steady convective flow in a vertical
layer with thermally insulated boundaries and a comparison with the opposite limiting case of
ideally thermally conducting boundaries are presented,

The results of studies of the stability of closed steady convective flow between vertical parallel planes
f1,2] show that depending on the value of the Prandtl number Pr the instability is caused by mechanisms
which differ in their physical nature. At low and moderate Prandtl numbers hydrodynamic disturbances
leading to the formation of steady vortices at the interface of the opposing flows are responsible for the insta-
bility. At larger Prandtl numbers (Pr > 12) the instability has a wave nature and is connected with an increase
in the convective fluxes of temperature waves.

The numerical results presented in [1,2] were obtained on the assumption that temperature disturbances
vanish at the boundaries of the layer. Such boundary conditions correspond to the limiting case when the ther-
mal conductivity of the boundaries is much greater than the thermal conductivity of the liquid. If the thermal
conductivities of the ligquid and the solid masses bordering on it are comparable then temperature disturbances
penetrate into the solid masses. Then the question arises of whether the relative thermal conductivity of the
boundaries affects the stability of the convective flow ¢he conjugate problem of stability of convective flow).

It is clear in advance that the hydrodynamic mechanism of the instability must be little sensitive to the thermal
properties of the solid masses. As for a wave instability, since it is connected with growing temperature
waves it could be expected, generally speaking, that the properties of the solid masses have a considerable
effect on the critical parameters of this instability. The results presented below show, however, that the
penetration of temperature disturbances into the surrounding solid masses has a weak effect on the conditions
of formation of instabilities of both the hydrodynamic and the wave types.

To clarify the role of the penetration of thermal disturbances on the stability it is obviously sufficient
to consider the limifing case opposite to that which one usually has in mind, namely, when the thermal conduc-
tivity of the liquid is far larger than the thermal conductivity of the boundaries. Inthis limiting case the
boundary condition of thermal insulation must be set up for temperature disturbances.

In the closed vertical layer between the planes x = +h a plane-~-parallel convective flow is established
with a linear temperature profile and a cubic velocity profile:
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Fig. 1. Minimum critical Grashof number as a function

of Prandtl number: 1) hydrodynamic branch; 2) wave branch.
Solid lines: thermally insulated boundaries; dashed lines:
ideally thermally conducting boundaries.
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Here we introduce dimensionless variables; as the units of distance, velocity, and temperature we take h,
v/h (v is the kinematic viscosity), and the half-difference ® between the temperatures of the planes. The
Grashof number is defined as usual: Gr =gp3@h3/v?, The analysis of small normal disturbances of the form
exp (—At +ikz) leads to dimensioness equations for the amplitudes of the disturbances of the stream function
¢ and the temperature 0:

(o!V —2£2¢" 4 k@) + (¢" — k2 @) (A — ikyy) + ikoy @ —Gro’ =0, @)
-—pl—(e"— £26) + (A — ikup)8 — kT =0 @)
T

(here Pr =v/y is the Prandtl number)., The following conditions for the amplitudes are set up at the boundaries
of the layer:

x==x1: ¢=¢' =0 =0. “)

The boundary problem (2)-(4) determines the spectrum of the characteristic disturbances and their dec~
rements A, The limits of stability are found from the condition Ay = 0. The solution of the problem was
found numerically by the Runge — Kutta — Merson method with orthogonalization of the vector solutions by the
Gram — Schmidt method at each step of integration; the orthonormalization was performed with respect to the
maximum vector solution in absolute value (in the given step).

The principal result ofthe calculations is presented in Fig. 1, where the dependence of the minimum
(with respect to k) critical Grashof number Grmy on the Prandtl number Pr is shown for the hydrodynamic (1)
and wave (2) branches of instability. The corresponding limits of stability for ideally conducting boundaries
[1,2] are shown here by a dashed line for comparison. As is seen, in both branches of instability the depen-
dences Gr (Pr) for the two types of boundary conditions are similar. By comparison with the case of ideally
conducting boundaries there is some decrease in the limiting Prandtl number Prx beginning with which the
wave branch of instability appears (extrapolation gives a value of Pr« = 8 instead of 11 4 for the case of ideally
thermally conducting boundaries). Inthe limit of Pr > Pr«, as an asymptotic analysis shows (see [3]), the
same limiting law Grm = 590/v Pr occurs in both cases of boundary conditions, The critical values of the wave
number k;, are also similar for the twovariants of the boundary conditions discussed.

Thus, the calculation shows that the thermal properties of the boundaries have a weak effect on the sta-
bility of convective flow in a vertical layer. Inthis sense one must emphasize the difference from the problem
of the stability of equilibrium of a horizontal layer of liquid heated from below, where, as is known (see [1]),
there is a very strong dependence of the limit of stability and the form of the disturbances onthe thermal prop-
erties of the boundary solid masses.
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NOTATION

X, z, transverse and longitudinal coordinates; vy, T, undisturbed velocity and temperature profiles;
¢, 6, amplitudes of disturbances of stream function and temperature; A, decrement; k, wave number.
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HYDRODYNAMIC STABILITY OF CONVECTIVE FLOW OF
A NON-NEWTONIAN FLUID IN A VERTICAL LAYER

I. G. Semakin UDC 536.25:532,135

Steady convective non-Newtonian fluid flow and its stability under small perturbations are inves-
tigated,

We wish to analyze the free thermal convection of a non-Newtonian fluid in an infinite-plane vertical
channel. We use the rheological equation

Ty=—8up+n(l+al)" ey 1)

Transition to a Newtonian fluid takes place as a =~ 0 or n —~ 1. Inthe limit of large @ the Ostwald
—Deville model is obtained from (1). Unlike the power-law model, Eq. (1) gives a finite initial viscosity.

It has been shown [1]that Eq. (1) well describes the rheological properties of polymer solutions ina
definite concentration interval. The authors of [1] discuss pseudoplastic media withn — 1 = —m < 0,

We now investigate plane convective motion homogeneous along the z axis. We place the coordinate
axes sothat the y axis is directed upward along the centerline of the channel and the x axis is perpendicular
to the walls. The wall coordinates are x = +h, The walls are maintained at constant temperatures: T (—h) =
8y; T(h) =—B8.

We adopt the following reference units: distance h; time h%o/n; velocity pr®0h2/n; temperature @;
pressure pg3®sh. The system of dimensionless free-convection equations in projections onto the x and y axes
has the form

dv dv du,, ap oH  0Ov o0H [ v, du ) ] '
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